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Abstract. The properties of mesonic resonances can be calculated in terms of the low-energy coefficients
of chiral perturbation theory (χPT) by extending unitarized χPT to higher energies. On the other hand,
these low-energy coefficients can be calculated in two different models, namely i) by assuming resonance
saturation and ii) within a constituent quark model. By matching the expressions of the two models
combined with the results of unitarized χPT and the Weinberg sum rules, the properties of vector and
axial-vector mesons can be calculated in the combined large-Nc and chiral limit.

PACS. 12.39.Fe Phenomenological quark models: Chiral Lagrangians – 14.40.Cs Properties of specific
particles: Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

What determines the properties of hadrons made from
light quarks, chiral symmetry breaking (χSB) and/or con-
finement? It is nowadays common wisdom that the mech-
anism of χSB causes large constituent quark masses of the
order of 300–400 MeV. Hence even without confinement
the creation of a quark-antiquark pair is rather expensive.
Therefore, the role of confinement for the description of
light hadrons is at least diminished by the appearance of
χSB [1]. This suggests that the properties of light hadrons
are quantitatively determined by the effect of χSB. In such
a scenario confinement enters only qualitatively by exclud-
ing non-white states and quark-antiquark thresholds. It is
well known that such a picture works very well for pions
(e.g., [2] and references therein). It is the purpose of the
present work to apply that picture to ρ- and a1-mesons.
One reason why one does not need confinement to de-
scribe the properties of pions can be found in the fact
that the mass of these quasi-Goldstone bosons is much
below the (constituent!) quark-antiquark threshold. This
is of course different for other types of mesons. At first
glance it seems that this messes up the line of reasoning
given above. The point however is that e.g. ρ-mesons leave
a trace also in the low-energy region much below their pole
mass by mediating, e.g., pion-pion interactions [3]. Hence
the key idea is that on the one hand (χSB aspect) one can
describe the low-energy region reliably by a (chiral!) quark
model (without confinement) —as this region is far away
from the quark-antiquark production threshold. On the
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Fig. 1. Schematic view of the resonance saturation model (a)
and the constituent quark model (c) and their respective low-
energy reduction to χPT (b). The dashed lines denote Gold-
stone bosons, the double line mesonic resonances and the full
lines quarks.

other hand (confinement aspect) the mesonic resonances
are supposed to mediate the interactions in this low-energy
regime. By matching corresponding expressions it should
be possible to determine masses and coupling constants of
mesonic resonances in terms of quark model expressions.
This procedure is depicted schematically in fig. 1. For sim-
plicity I work in the following in the combined large-Nc

and chiral limit.1

2 Chiral perturbation theory and unitarization

At low energies QCD reduces to an effective theory where
only the lightest mesons —the pseudoscalar Goldstone
bosons— appear which interact with each other and with
external sources. χSB demands that the meson interaction

1 To be specific I take the large-Nc limit first, i.e. neglect the
chiral log’s which are suppressed by 1/Nc.
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vanishes with vanishing energy. Therefore a systematic ex-
pansion in terms of the derivatives of the meson fields
is possible. These considerations lead to the effective La-
grangian of chiral perturbation theory (χPT) [4]:

LχPT = L1 + L2 + higher order derivatives (1)

with

L1 =
1
4

F 2
π tr(∇µU†∇µU) + . . . , (2)

L2 = L1〈∇µU†∇µU〉2 + L2〈∇µU†∇νU〉〈∇µU†∇νU〉
+ L3〈∇µU†∇µU∇νU†∇νU〉
− iL9〈FR

µν∇µU∇νU† + FL
µν∇µU†∇νU〉+ . . . , (3)

where I have only displayed the terms which are rele-
vant for later use. In U the pseudoscalar meson fields
are encoded. FR,L

µν denotes the field strength which cor-
responds to (chirally covariant combinations of) external
vector fields vµ and axial-vector fields aµ. Fπ denotes the
pion decay constant (in the chiral limit). I refer to [4] for
further details. The four-point meson interaction induced
by (3) is depicted schematically in fig. 1b.

As it stands the effective theory (1)-(3) is valid at low
energies only. Especially unitarity is not fulfilled. In [5]
the inverse amplitude method (IAM) is used to unita-
rize the effective theory and extend its applicability to the
mesonic-resonance region. The IAM is very well suited to
recover a resonance from its trace left at low energies [6]
and therefore fits perfectly to the philosophy discussed
above. In [5] it is demonstrated that the IAM is able to
reproduce the scattering data of pions, kaons and etas up
to 1.2 GeV including several mesonic resonances. Here I
am interested in the large-Nc and chiral limit of the re-
sults presented in [5]. It is easy to show that in this limit
the mass of the ρ-meson becomes [7]

M2
V = − F 2

π

4L3
. (4)

3 Chiral constituent quark model

As already pointed out it should be reasonable to calcu-
late the coefficients of the effective theory (1)-(3) from a
chiral constituent quark model, as the low-energy region
is (much) below the quark-antiquark production thresh-
old. In the following I use the quark–Goldstone-boson La-
grangian (in Euclidean space)

Lquark = q̄ (γµ∂µ − MUγ5 + γµvµ + γµγ5aµ + . . .) q . (5)

This Lagrangian can be motivated in several ways (e.g. [8,
9]). I would like to stress that it is also the simplest model
which one can write down which couples quarks to the
Goldstone bosons of χSB. The latter are encoded in

Uγ5 =
1− γ5

2
U +

1 + γ5

2
U† . (6)

M denotes the mass of the constituent quark. The dots
in (5) denote further couplings to external sources besides

the displayed ones for vector and axial-vector fields. By in-
tegrating out the quarks, expanding the obtained effective
action in terms of meson field derivatives and finally trans-
forming the result to Minkowski space one arrives at the
χPT Lagrangian (1) with predictions for the low-energy
constants. This procedure is shown in fig. 1 as the tran-
sition from fig. 1c to fig. 1b. For the constants of interest
one obtains [9]

Lquark
1 =

Nc

384π2
, Lquark

2 = 2Lquark
1 ,

Lquark
3 = −4Lquark

1 , Lquark
9 = 8Lquark

1 . (7)

Note that the results are pure numbers, i.e. do not depend
on any model-dependent quantities like, e.g., the UV cut-
off which regulates UV singular integrals coming from the
non-renormalizable Lagrangian (5). The reason is that the
loop depicted in fig. 1c is actually UV finite.

4 Resonance saturation model

Assuming that (only) resonances mediate the low-energy
interactions of (3) one can write down a Lagrangian which
couples resonances to Goldstone bosons [10]. Here I con-
centrate on the ρ-meson and its interaction Lagrangian

Lint =
FV

2
√
2
tr(Vµνfµν

+ ) +
iGV√
2
tr(Vµνuµuν) , (8)

where basically uµ is obtained from U , i.e. contains the
pseudoscalar fields, while fµν

+ contains the external vector
fields (see [10] for details). Vµν denotes the vector me-
son resonance in the tensor representation. Note that one
does not assume here that the vector meson couples with
the same strength to the external vector field (photon) as
it couples to the pseudoscalars (e.g. pions). To phrase it
differently, universality of the ρ-meson coupling is not an
input of the resonance saturation model. As I will show
below, however, one gains the universality as an output
of my approach. Integrating out the resonance fields one
obtains (3) with predictions for the low-energy coefficients
(schematically shown in fig. 1 by the transition from a to
b). For the ones governed solely by vector meson exchange
one gets [10]

Lres
2 =

G2
V

4M2
V

, Lres
9 =

FV GV

2M2
V

. (9)

Note that all the other low-energy constants are addition-
ally influenced by the exchange of mesons with different
quantum numbers.

5 Results from matching

In the last sections I have basically collected results from
the literature. The new aspect is now that the results from
the approaches with hadronic degrees of freedom (sects. 2,
4) are matched to the quark model calculations of sect. 3.
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As already pointed out in the introduction, the idea be-
hind that matching is that, on the one hand, the chiral
quark model is supposed to give reliable results in the
low-energy regime. On the other hand, confinement en-
forces the formation of resonances (instead of the pro-
duction of free quarks and antiquarks). These resonances,
however, are also visible at low energies, i.e. determine
the low-energy structure of the strong interaction. From
the matching procedure one obtains information about the
resonances in terms of quark degrees of freedom.

Even without the results of sect. 4 one obtains from
(4) and (7) for the ρ-meson mass:

M2
V =

24π2F 2
π

Nc
. (10)

Using the physical value for the pion decay constant Fπ ≈
93MeV the ρ-meson mass turns out to be MV ≈ 826MeV,
already close to the physical ρ-meson mass of 770MeV.
Note that this result was obtained in the chiral and large-
Nc limit. Hence pion loops are absent in this framework,
i.e. I have determined the mass of a bare ρ-meson without
its pion cloud. Typically the ρ-pion interaction reduces the
bare ρ mass by approximately 5–10% [11,12].

Using in addition (9) yields the coupling constants

F 2
V = 2F 2

π , G2
V =

F 2
π

2
. (11)

In particular, the relation FV = 2GV states the univer-
sality of the vector meson coupling as can be most easily
seen by inspecting (8). This automatically implies that the
KSFR relation is fulfilled [13].

The connection of GV to the usual ρππ coupling is
provided by

g =
GV MV

F 2
π

(12)

with g defined via the Lagrangian [12]

Lint =
ig

4
tr(V µ [∂µΦ,Φ])− g2

16
tr([V µ, Φ]2) , (13)

where V µ is the vector meson resonance in the vector rep-
resentation and Φ is connected to U via U = exp(iΦ/Fπ).
Relation (12) can be obtained by calculating the decay
width Γ (ρ → ππ) in both approaches (8) and (13). From
(10), (11) one gets

g =
√

3
Nc

2π (14)

as compared to the experimental value of 6.05 extracted
from the decay width Γ (ρ → ππ) [12].

Finally, properties of the axial-vector meson a1 can be
deduced from the Weinberg sum rules [13,10]:

F 2
V = F 2

A + F 2
π , M2

V F 2
V = M2

AF 2
A . (15)

In combination with the previous results this yields the a1

mass

MA =
√

3
Nc

4πFπ ≈ 1169MeV (16)

and the coupling of the a1 to an external axial-vector cur-
rent

FA = Fπ ≈ 93MeV (17)
to be compared to the experimental values Ma1 = 1230±
40MeV and Fa1 = 124± 27MeV [10].

6 Summary and outlook

I have presented a somewhat indirect way to determine
the properties of vector and axial-vector mesons in terms
of quark degrees of freedom. The success of the presented
approach suggests that it is indeed the phenomenon of
χSB which quantitatively determines the properties of
the studied mesonic resonances. Confinement enters the
framework only qualitatively by demanding that color-
white resonances are formed instead of quark-antiquark
pairs.

There are things which still have to be clarified: First,
I have utilized two different versions of resonance satura-
tion. In the first one (sect. 2) resonances are created from
a combination of the two Lagrangians (2) and (3) (cf. [5]
for details), while in the second version (sect. 4) the res-
onances only influence the fourth-order Lagrangian (3).
The connection of these two versions has to be studied
in more detail. Second, there is a low-energy constant,
namely L10, which can be calculated both from the quark
model and from the resonance saturation model using vec-
tor and axial-vector mesons. It turns out that one needs
more than one meson per channel to achieve an agreement
between the two calculations [14].

I expect that the presented framework can be ex-
tended from the vacuum case studied here to the case of
a medium with finite temperature and/or quark density.
This should provide interesting insight in the in-medium
changes e.g. of the ρ-meson mass, its coupling to pions and
photons and possible differences between longitudinal and
transverse ρ-mesons.
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560, 411 (1993).
12. F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356, 193 (1996).
13. S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).
14. S. Leupold, in preparation.


